Dynamic and steady-state simulation study for the stabilization of satural gas condensate and CO2 removal through heating and pressure reduction.

Ehsan, M, Ali, U, Sher, F ORCID logoORCID: https://orcid.org/0000-0003-2890-5912, Abubakar, HM and Basit, MFU, 2023. Dynamic and steady-state simulation study for the stabilization of satural gas condensate and CO2 removal through heating and pressure reduction. ChemEngineering, 7 (5): 78. ISSN 2305-7084

Full text not available from this repository.

Abstract

Stabilization of condensate is a highly energy-consuming process compared to other oil and gas processes. There is a need to reduce this energy consumption. Therefore, the present work aims to simulate the stabilization unit in terms of available energy and on-spec stabilized condensate products. Natural gas condensate liquids (NGL) need to be stabilized by eliminating lighter hydrocarbon gases and acid gases before being sent to the refinery. Stabilized NGL has the vapor pressure determined as a Reid vapor pressure of 7 psia, showing that light components did not evolve as a separate gas phase. Stabilization and CO2 removal was performed through the distillation method by heating and pressure reduction using steady state and dynamic simulation through Aspen HYSYS. Different process alterations around the exchanger and column have been studied based on the utilities available for the stabilization and CO2 removal process. Sensitivity studies, including the impact of CO2 concentration, the temperature at the inlet of the stabilizer flash separator, and the dynamic simulation for the PID controller, have been performed to analyze the impact on the process parameters, such as Reid vapor pressure (RVP) and CO2 of the rundown air cooler and heat duties of the exchangers. Actual plant data have been used for the validation of process simulation values for the accuracy of the condensate stabilization unit model. Based on the scenarios analyzed, it can be concluded that the nitrogen stripping method achieved 7 ppmv CO2 and 7 psia RVP in the condensate from the cooler outlet, while a variation of 29 bpd was observed for the stabilized condensate flowrate throughout all scenarios with data validation showing 0.24% discrepancy between Aspen Hysys data and actual plant data.

Item Type: Journal article
Publication Title: ChemEngineering
Creators: Ehsan, M., Ali, U., Sher, F., Abubakar, H.M. and Basit, M.F.U.
Publisher: MDPI AG
Date: 29 August 2023
Volume: 7
Number: 5
ISSN: 2305-7084
Identifiers:
Number
Type
10.3390/chemengineering7050078
DOI
1827108
Other
Divisions: Schools > School of Science and Technology
Record created by: Jeremy Silvester
Date Added: 27 Oct 2023 15:50
Last Modified: 27 Oct 2023 15:50
URI: https://irep.ntu.ac.uk/id/eprint/50163

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year