A performance study of genetic algorithms-based quantum approximate optimisation in the context of power networks

Chiatto, A, Alizadeh, A, Acampora, G, Vitiello, A, Pourabdollah, A ORCID logoORCID: https://orcid.org/0000-0001-7737-1393 and Lotfi, A ORCID logoORCID: https://orcid.org/0000-0002-5139-6565, 2025. A performance study of genetic algorithms-based quantum approximate optimisation in the context of power networks. In: Zheng, H, Glass, D, Mulvenna, M, Liu, J and Wang, H, eds., Advances in computational intelligence systems: contributions presented at the 23rd UK Workshop on Computational Intelligence (UKCI 2024), September 2-4, 2024, Ulster University, Belfast, UK. Advances in Intelligent Systems and Computing . Cham: Springer, pp. 303-314. ISBN 9783031788567

Full text not available from this repository.
Item Type: Chapter in book
Description: Paper presented at 23rd UK Workshop on Computational Intelligence (UKCI 2024), September 2-4, 2024, Ulster University, Belfast.
Creators: Chiatto, A., Alizadeh, A., Acampora, G., Vitiello, A., Pourabdollah, A. and Lotfi, A.
Publisher: Springer
Place of Publication: Cham
Date: 8 January 2025
ISBN: 9783031788567
Identifiers:
Number
Type
10.1007/978-3-031-78857-4_23
DOI
2347184
Other
Divisions: Schools > School of Science and Technology
Record created by: Laura Borcherds
Date Added: 11 Mar 2025 13:36
Last Modified: 11 Mar 2025 13:36
URI: https://irep.ntu.ac.uk/id/eprint/53232

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year